Règles de dérivation

http://mathsciences.lpjeandarcet.fr/

Fonctions dérivées des fonctions usuelles

Fonction	Fonction dérivée	Intervalle de définition
f(x) = a	f'(x)=0	\mathbb{R}
f(x) = ax	f'(x) = a	\mathbb{R}
f(x) = ax + b	f'(x) = a	\mathbb{R}
$f(x) = x^2$	f'(x) = 2x	\mathbb{R}
$f(x) = x^3$	$f'(x) = 3x^2$	\mathbb{R}
$f(x) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	ℝ*

Règles de dérivation

On considère u et v deux fonctions dérivables sur un intervalle I. On appelle u et v leurs dérivées respectives.

Dérivée de f = u + v

Dérivée de f = au où a est un réel

Exemples

Déterminer la fonction dérivée f de chacune des fonctions f ci-dessous :

1.
$$f(x) = 3x$$

2.
$$f(x) = 2x + 5$$

3.
$$f(x) = \frac{1}{3}x^2$$

4.
$$f(x) = 4x^3$$

5.
$$f(x) = \frac{-5}{x}$$

6.
$$f(x) = x + \frac{1}{x}$$

7.
$$f(x) = x^2 + 5x + 1$$

8.
$$f(x) = 2 - \frac{3}{x}$$

6.
$$f(x) = x + \frac{1}{x}$$

7. $f(x) = x^2 + 5x + 1$
8. $f(x) = 2 - \frac{3}{x}$
9. $f(x) = 2x^2 - \frac{1}{x}$
10. $f(x) = 2x^3 - 4x^2 + 5$

$$10. f(x) = 2x^3 - 4x^2 + 5$$